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Resonance in a Superstrate-Loaded
Cylindrical-Rectangular Microstrip Structure

Kin-Lu Wong, Member, IEEE, Yuan-Tung Cheng, and Jeen-Sheen Row

Abstract—The complex resonant frequencies of the cylindrical-
rectangular microstrip structure loaded with a dielectric super-
strate layer is studied by using a rigorous full-wave analysis
and the numerical results are obtained by using the Galerkin’s
moment method calculation. The numerical convergence for
the selected sinusoidal basis functions with and without the
edge singularity condition is also discussed. Numerical results
for the dependence of the real and imaginary parts of the
complex resonant frequencies on the superstrate permittivity and
thickness are calculated and analyzed, which are also compared
with those obtained for the planar microstrip structure.

I. INTRODUCTION

NE OF THE major advantages of a microstrip patch

antenna is its conformity. Several investigations on this
kind of conformal antennas have also been reported recently
[1]-[5]. For many applications of the conformal patch antenna
to be employed in airborne and spacecraft systems, a dielectric
superstrate layer is usually added on the top of the patch to
provide protection against environmental hazards, such as rain,
hail, and snow. Unfortunately, this superstrate layer also causes
great effécts on the characteristics of the microstrip structure,
which have been indicated in many related reports [6]-[9].
However, these studies are mainly on the case of planar
microstrip structures and the investigations on the superstrate-
loaded conformal microstrip structure are very scant. Available
information for such conformal microstrip structures is there-
fore very limited. This motivates the present work described in
this paper to perform a rigorous full-wave approach to study
the complex resonant frequency problem of the superstrate-
loaded cylindrical-rectangular microstrip structure, which has
not been reported in the open literature. The complex resonant
frequencies, which can provide the information of the resonant
frequency and quality factor of the microstrip structure, are
calculated by using the Galerkin’s moment method [10] with
the selected sinusoidal basis functions for the unknown surface
current density on the curved patch. The numerical conver-
gence for the sinusoidal basis functions with and without the
edge singularity condition is also calculated and discussed.
The obtained results for the real and imaginary parts of the
complex resonant frequencies are analyzed as functions of
the superstrate permittivity and thickness. The results are also
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compared with those obtained for the superstrate-loaded planar
microstrip structure [9] to analyze the curvature effect on
the resonant frequency, radiation loss, and quality factor of
a conformal microstrip structure.

II. FULL-WAVE FORMULATION OF THE PROBLEM

Fig. 1 shows the geometry of a cylindrical-rectangular
microstrip patch loaded with a protecting dielectric super-
strate. The cylindrical microstrip structure considered here
is a concentric circular cylindrical structure consisting of a
ground perfect conducting cylinder with radius a (region 0) and
coaxial cylindrical substrate (region 1) and superstrate (region
2) layers. The air is in region 3 with free space permittivity
€p and permeability £9. The curved rectangular patch is at
the substrate-superstrate interface of p = b and has a straight
dimension of 2L and a curved dimension of 2b¢, where 2¢y is
the angle subtended by the curved patch. The substrate layer is
with a relative permittivity ¢; and thickness h (= b—a), while
the superstrate layer is of thickness ¢ (= ¢ — b) and a relative
permittivity ¢;. The permeability is everywhere assumed to
be . In this geometry the z components of the electric and
magnetic fields in each region can be given by (suppressing

e/t time dependence)
e””5 / dk,e*2*

n=—oo

E.(p,¢,2) =

[A@H“)(klpp) + BiJu(k1op)l, b>p>a (la)
[CeHEY (kapp) + D2 Jnlkapp)], ¢>p>b (Ib)

Go HSY (k3pp), p>c (1c)

H(pg{)z):ii 7kejkzz
z ki M 27_r —

[ARHD (k1op) + BETu(k1pp)), b>p>a ()
[OhH(l)(kz p) + DEJ,(kayp)l, ¢>p>b (2b)

Ghal )(kapp), p>c (2¢)

where k? — k7, = k2,1 = 1,2,3, and there are ten unknown

coefficients of A7, By, Cr, DZ and G%,x = e, h, to be deter-
mined. From the expressions of £, and H, the components
E4 and H, can also be expressed as

_ —jwme dH,  k.n
by = kizp i kszE (3a)
jwedE, k.,n
Hy ="— .
=T dp i (3b)
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Fig. 1. The geometry of a cylindrical-rectangular microstrip patch with a

dielectric superstrate cover.

Imposing the boundary conditions at p = a,b, and ¢ for
the E, and E,; components of the electric field, we can have
the coefficients of A%, BX,C% and D;j. for E, and H, to be
expressed in terms of (7 and given in Appendix I. These
coefficients for a vanishing superstrate layer (i.e., ¢ — b) can
be reduced to the corresponding values shown in [2].

As for applying the discontinuity boundary condition at

= b for the tangential components H, and Hy of the
magnetic field on the patch, a matrix relationship between the
current density in the spectral domain on the patch and the
field amplitudes in region 3 can be obtained and given by

Jon(kz) | _ [ X1 X1 | GE HP (k3p) @
Ton(ks) | [ X1 Xoz '

GZHr(zl)(ki%Q
where the coefficients X711, X102, Xo1, and X9 are listed in
Appendix II and

)| =g [ s [z 103
6))
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Furthermore, following the derivation procedure in [2], the
tangential components of the electric field, E4, and E,, in
the spectral domain, on the patch can be found to be related
to the current density Jy,, and J,, in (5) and the following
equation is obtained:

Eup(k.)| = Jon (k)
[E‘jn(kz)] — Q. (k) - {an(kz)], ©)
where
Qulk) = | Gee &
={511 Sl2:||:X11 X12]——1 7
Sa1 S || Xa1 Xa2
and
Egn(k) in —ik_z| Egn(9,2)
[E&n k.) ] 2wl/‘d¢e ¢(/‘dz i [ in(¢a§)}'

)

The coefficients S11, 512, 521, and Ss2 in (7) are also listed
in Appendix II. Next, by imposing the boundary condition
on the patch and outside the patch at the substrate-superstrate
interface, the following integral equations can be obtained:

55]-4 £ [l

0
(9] 0

and, outside the patch,

e =g X o [ e i)
:[g].: _

10)
To solve for the above integral equations, the Galerkin’s
moment method [10] is applied. Following the Galerkin’s
calculation procedure, we first expand the surface current
density on the patch in terms of linear combinations of known
basis functions, i.e.

qﬁ,z) Zl¢nj¢n(¢,z) + Z Iszzm ¢a ) (11)

n=1 m=1

where Iy, and I., are unknown coefficients for the nth
expansion mode of the basis functions Jy, and J.m in the
¢ and z directions, respectively. A convenient choice of the
basis functions is the cavity mode functions of

j¢n(¢, z) = ¢ sin [————(d) ¢0)] cos [2L (z + L)}
(12a)

(¢~ ¢o)]
(12b)

Jom(P, 2) = 2 sin [-;%(z + L)] cos [2¢
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or
Ton( )= 7= Sm[ 25~ ¢o>] cos [ 22 (z+1),
(13a)
5 1 .
Ton,2)=3 o sin [ e+ )] e 55ete- )]
(13b)

The sinusoidal basis functions of (13) consider the edge sin-
gularity condition for the tangential component of the surface
current at the edge of the patch, while the basis functions
of (12) do not consider such edge singularity conditions. The
combinations of the integers p, ¢, 7, and s depend on the mode
numbers 1 and m. For the first three modes, n = 1,2, and 3,
the values of (p, q) are (1, 0), (1, 1) and (1, 2), respectively, and
the values of (r, s) are (1, 0), (1, 1) and (1, 2) for m = 1,2
and 3. The numerical convergence for the sinusoidal basis
functions with and without considering the edge singularity
condition will be calculated and discussed in detail in Section
III. Next, by taking the spectral amplitudes of the selected
basis functions and substituting into (9), we have

N
> TsnFonr(k.)
63T¢/ dk, edk 4% Q (k) - 7}‘71
=T > LnFom (k)
m=1
0
= [0} (14)
where
T L
F¢mr(kz):51—/dqﬁe‘j’”d’/dze‘jkzzJ¢n(¢,z), (15)
Fomr(k / dpe?"? / dze " 2" Lom(9,2).  (16)

Using the selected basis functions as testing functions and
integrating over the patch area, we can have the following
homogeneous matrix equation

[(Z?f?)zvxzv (fof)NxM} . {(IWN“] - {8] (17

Ziwxn (Zizdwxar ] [ Tem)axa
where
ja%e) o0
25t = / dk. Z Fytn(K2) Qo Fsnn(ks), (182)
le;f :/ dk Z szr qudern r(k) (180)
szn :/ dl‘/ Z szr Kk )sz zm r(k )
k,m=1,2,~-~,M,
I,n=12,---,N. (18d)
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Fig. 2. Normalized frequency shifts with different numbers of the sinusoidal
basis functions with and without the edge singularity condition versus substrate
thickness; ¢ = 20 cm, L = 4 cm, bdg = 8.4 cm, €1 = 2.3. (a) Real resonant
frequency. (b) Imaginary resonant frequency.

There exist nontrivial solutions for Iy, and I.,, in (17) if the
determinant of (17) vanishes, i.e

(Z¢¢)N><N
(Ziaxm

(Z%)NXM

det
(ZFZ ) nixm

= 0. 19
The solutions to (19) are then found to be satisfied by complex
frequencies. For a particular mode, the complex frequency is
f = f'+ jf that gives the resonant frequency f’ and the
quality factor f'/2f” for the superstrate-loaded cylindrical-

rectangular microstrip structure.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, typical numerical results of the superstrate-
loaded cylindrical-rectangular microstrip patch at the HEg;
mode are presented and analyzed. The hybrid mode HEg,
tends to the TEg; mode for the case of vanishing thin sub-
strates, which is shown to be an efficient radiating mode [2].
The numerical convergence and the computer computation
time for the calculation with the sinusoidal basis functions of
(12) and (13), respectively, are first studied. Fig. 2 shows the
real and imaginary parts of the complex resonant frequencies
obtained for different numbers of the sinusoidal basis functions
with and without the edge singularity condition versus the
substrate thickness. The substrate is with a relative permittivity
of 2.3 and the radius of the ground conducting cylinder is
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chosen to be 20 cm. The cylindrical-rectangular microstrip
patch considered in the calculation is with a straight dimension
of 2L = 8 cm and a curved dimension of 2b¢y = 16.8
cm. The frequencies are all normalized with respect to the
cavity-mode resonant frequency [11]. It is observed that both
the real and imaginary resonant frequencies can only reach
convergent solutions for both the basis functions of (12) and
(13) with N > 2and M > 2. It is also found that the computer
computation time for reaching the convergent solution of one
resonant frequency (N = M = 2) on a HP720 workstation is
about the same and is estimated to be about 700 seconds. The
real parts of the convergent solutions using basis functions
with edge singularity are also found to differ from those
without edge singularity with about 0.5%, while the imaginary
parts of the convergent solutions for both types of the basis
function are almost exactly the same. The convergent results
are also in good agreement with those presented in [2]. It is
also noted that, for N = 2, M = 1, the obtained results of the
basis function with edge singularity are seen to be much closer
to the convergent results than those obtained by using the basis
functions without edge singularity, especially for the imaginary
parts of the results and the higher thickness of the substrate.
This may imply that the sinusoidal basis functions considering
the edge singularity can describe the unknown surface current
on the cylindrical-rectangular patch more accurately.

Fig. 3 shows the normalized real and imaginary parts of the
complex resonant frequencies versus the superstrate thickness
for €5 = 2.3,4.0, and 5.6 with a = 20,00 cm. The substrate
thickness % is 0.4 cm and the relative permittivity €; is 2.3.
The results for the planar microstrip case (¢ = oo cm)
are obtained in [9], which is based on a rigorous Green’s
function formulation and moment method calculation. The
basis functions of (13) with N = M = 2 are used to obtain
the results. It can be seen that the real (resonant) frequency
decreases as the superstrate permittivity increases and the
curved microstrip case is with a higher resonant frequency than
that for the planar microstrip case. From the imaginary results
in Fig. 3(b), it is seen that the radiation loss of the cylindrical-
rectangular microstrip structure at HEg; mode is higher than
that for the planar microstrip case and can be further increased
when a higher superstrate permittivity is used. The variations
of the quality factor with the superstrate thickness for the case
in Fig. 3 are shown in Fig. 4. The quality factor is seen to
decrease when the superstrate permittivity is higher, and the
curved microstrip case is with a lower quality factor than that
for the planar microstrip case.

IV. CONCLUSIONS

A full-wave approach and the Galerkin’s moment method
are employed to solve the complex resonant frequency for a
superstrate-loaded cylindrical-rectangular microstrip structure.
The sinusoidal basis functions with the edge singularity are
found to be more appropriate for expanding the unknown
surface current on the cylindrical-rectangular patch. Numerical
results also indicate that both the resonant frequency and the
radiation loss of the curved microstrip structure are higher than
those of the planar case. On the contrary, the quality factor of
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Fig. 3. Normalized frequency shifts versus the superstrate thickness for
eo = 2.3,4.0, and 5.6; a = 20,00 cm. (a) Real resonant frequency. (b)
Imaginary resonant frequency. The results for the planar microstrip case
(a = oo cm) are obtained in [9].
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Fig. 4. Variations of the quality factor with the superstrate thickness for the
case in Fig. 3.

the curved structure is lower than that of the planar case. On
the other hand, as the superstrate permittivity increases, both
the resonant frequency and the quality factor decrease and the
radiation loss, however, increases.

APPENDIX 1

The coefficients A%, B, C% and DZ,x = e, h, for E, and
H, in regions 1 and 2 can be expressed in terms of G, in



818 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 5, MAY 1993

region 3 and given by

Ag = T (k1,0)[CEHD (kapb)
+ D5 T (k2pb)]/ [Jn (k1 pa) H (y pb)
- Jn(klpb)Hg)(klpa)]a

T, (k1,0)[CRHSY (o b) + DRI (kaph)] Ky
T, (k1pa) HEY (k1,b) — J (k1,b) HSY (kypa) k2p

]wﬁn(——QWﬁwmww+m%%w%

AP =

n

PR,
Bt = Hél)(klpa’) A¢
n Jn(klpa/) n?

gt = B2 (k1,0)
" I} (k1p0)

C¢ =a1G° + G,

Ol = 3G + a,Gh,

—agHp(kape) 1- quél)(kzpc) 5
Df =——2 27 @Ge 1 Gy,
Ju(k2pc) In(k2pc)
ph = Lo 0atn(kape) e s H (k2p€) o
Jn(kapc) Jn(kzpcC)
where
oy = o e3kaoHn (k?rp ) Jrlz(kch) ’
62k3p (kg,,c) Jn(kQPC)
o = Jwpok,n B _
2= Yo kQ k2pc €2 ’
ko, HY' (K T (k
N 2piin ( 3Pc) n( 2PC)
%= (D T Tk
kapHn (kspc)  In(k2pc)
_ jwesk.n &
= k3, k20 (1 63>’
o Jn(kapc) _
" HY (k)T haye) — Ty (ape HD (ko)

APPENDIX II
The coefficients Xlla X12, X21, Xzz, 511, 512, 521, Szz are
expressed as

X11 = 61Xo/B0 — Y284,

X192 = B2X0/B0 — [y3Bs + Jn(ka2,pb)/ In(kape)],

ik J! (ka,b
Xo1 = J%0 {623[0534- k2 )}

1207 | k Jn(k2pc)
s I (kz,b)
klpﬁoXl [yoﬂzrl‘ T (kz,0)
nkz 61 y2ﬁ4
X - =
b {k%pﬂo ’ k%p
Xop = L0028, 54 30 500X
22 — 120 k Y193 k yl 4041
nk, ,35 1 ( n(k2pb)>
+ =25 Xo - 5 + et
b |00\ T 0
nk, Tk b)] 712081 ko
S - + 2e - 9
11 k2 l:yO/B‘l n(kch) klp
71207 Brko
Sio =
12 kg 104 — ]
Jn(ko,b)
Soq = LA
21 = yolBs + T (k2y0)’
Sag = Y184,
where
x, = Jalkgh) HA (kagh) Iy (k1) = HA (k1p0) T (hi,b)
In(k100) HEY' (k1 yb) T (k1) — HEY (k)% (K1 b))
Tn(1p8) HE (k1) Jn (k1 p0) = HSY (k1,074 (k,b)
X1=— oy 1 ’
Jn(klpb) Hy ( )J (kl (Z) ( Y (klpa) n(klpb)
Bo = Jp(k1pb)/ Tn(K1,b),
nk, i In(K2,b)
= [ Z2e g nareprs
A 7120mkok,b <k§p ><y0ﬁ4 + Jn(kzpc)>
k1,
+ k—Q’p“yZ/B47
= Jrll(kzpc)/Jn(kzpC),

B3 = HY (kapb) — T} (kopb) HD (kap) ) Jo(kape),
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Pa

Bs =

Bs
o1

€13

Yo =

Yy =

Yz =

Y3 —

{1

[2]

3]

[4}

(5]
(6]
{7

{81

= Hr(zl)(kZPb) - Jn(k2pb)Hr(Ll)(k2pc)/=]n(k2pc),

nkz klp 1

, (kZpb)
7120mkoks,b \ k3, bl ‘“kzp [y3ﬁ3+ Tn(kzpc) |’

= HSY (kape)/HEV (kgpe),
= H7(Ll)l (k3pc)/H7(ll) (k3pc)a

= 61/635 €23 = 62/637

1 (5 5ss)
B2 = Bs HV (kgpc) > kapeas )’

1 | 1207nk
. k2 k2 -1 _‘—2.7
B2 — Be H,(ll)(k@pc)( 2p/ 30 >jk0623k2pc
1 nk
— k2 2y
ﬂ? - ﬂfi H,gl)(kzpc) ( ZP/ 3p)jk01207rk72pc

1
B2 = Bs HY (kypc)

(B2 — Brkay/ksp).
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