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Resonance in a Superstrate-Loaded

Cylindrical-Rectangular Microstrip Structure
Kin-Lu Wong, Member, IEEE, Yuan-Tung Cheng, and Jeen-Sheen Row

Abstract-The complex resonant frequencies of the cylindrical-
rectangular microstrip structure loaded with a dielectric super-

strata layer is studied by using a rigorous full-wave analysis
and the numerical results are obtained by using the Galerkin’s
moment method calculation. The numerical convergence for
the selected sinusoidal basis functions with and without the
edge singularity condition is also discussed. Numerical results
for the dependence of the real and imaginary parts of the
complex resonant frequencies on the superstrata permittivity and

thickness are calculated and analyzed, which are also compared

with those obtained for the planar microstrip structure.

I. INTRODUCTION

oNEOF THE major advantages of a microstrip patch

antenna is its conformity. Several investigations on this

kind of conformal antennas have also been reported recently

[1]-[5]. For many applications of the conformal patch antenna

to be employed in airborne and spacecraft systems, a dielectric

superstrata layer is usually added on the top of the patch to

provide protection against environmental hazards, such as rain,

hail, and snow. Unfortunately, this superstrata layer also causes

great effects on the characteristics of the microstrip structure,

which have been indicated in many related reports [6]–[9].

However, these studies are mainly on the case of planar

microstrip structures and the investigations on the superstrate-

loaded confortnal microstrip structure are very scant. Available

information for such confortnal microstrip structures is there-

fore very limited. This motivates the present work described in

this paper to perform a rigorous full-wave approach to study

the complex resonant frequency problem of the superstrate-

loaded cylindrical-rectangular microstrip structure, which has

not been reported in the open literature. The complex resonant

frequencies, which can provide the information of the resonant

frequency and quality factor of the microstrip structure, are

calculated by using the Galerkin’s moment method [10] with

the selected sinusoidal basis functions for the unknown surface

current density on the curved patch. The numerical conver-

gence for the sinusoidal basis functions with and without the

edge singularity condition is also calculated and discussed.

The obtained results for the real and imaginary parts of the

complex resonant frequencies are analyzed as functions of

the superstrata permittivity and thickness. The results are also

compared with those obtained for the superstrate-loaded planar

microstrip structure [9] to analyze the curvature effect on

the resonant frequency, radiation loss, and quality factor of

a confortnal microstrip structure.

II. FULL-WAVE FORMULATION OFT= PROBLEM

Fig. 1 shows the geometty of a cylindrical-rectangular

microstrip patch loaded with a protecting dielectric super-

strata. The cylindrical microstrip structure considered here

is a concentric circular cylindrical structure consisting of a

ground perfect conducting cylinder with radius a (region O) and

coaxial cylindrical substrate (region 1) and superstrata (region

2) layers. The air is in region 3 with free space perrnittivity

Co and permeability U.. The curved rectangular patch is at

the substrate-superstrate interface of p = b and has a straight

dimension of 2L and a curved dimension of 2bq$o,where 2q$ois

the angle subtended by the curved patch. The substrate layer is

with a relative pertnittivity El and thickness h (= b– a), while

the superstrata layer is of thickness t (= c – b) and a relative

permittivity Cz. The permeability is everywhere assumed to

be ~.. In this geometry the z components of the electric and

magnetic fields in each region can be given by (suppressing
~–~tit time dependence)

[

[A~H~’)(klpp) + B~Jn(klpP)], b > p > a (la)

~ [C; H$’)(kZpP) + D;&(kZpP)], C > p > b (lb)

G; H$)(k3Pp), p>c (lC)

[

[A~H~l) (kIPP) + BIJ~(klpP)], b > P > a (2a)

~ [C’!IL!) (k,pp) + D:Jn (k2/7P)], c > P > b $;

G@?)(k3PP), p>c

where lc~ — i% = k:, i = 1, 2, 3, and there are ten unknown

coefficients of A;, B:, C:, D: and G;, x = e, h, to be deter-

mined. From the expressions of E= and Hz the components

E4 and H4 can also be expressed as
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Fig. 1. The geometry of a cylindrical-rectangular microstrip patch with a

dielectric superstrata cover.

Imposing the boundary conditions at p = a,b, and c for

the E. and Ed components of the electric field, we can have

the coefficients of A:, B:, C;, and D; for E. and Hz to be

expressed in terms of G: and given in Appendix I. These

coefficients for a vanishing superstrata layer (i.e., c ~ b) can
be reduced to the corresponding values shown in [2].

As for applying the discontinuity boundary condition at
p = b for the tangentialcomponents Hz and Hd of the

magnetic field on the patch, a matrix relationship between the

current density in the spectral domain on the patch and the

field amplitudes in region 3 can be obtained and given by

where the coefficients Xl 1, X12, XX, and X22 are listed in

Appendix II and

Furthermore, following the derivation procedure in [2], the

tangential components of the electric field, Eon and E.n in
the spectral domain, on the patch can be found to be related

to the current density Jdm and Jzm in (5) and the following

equation is obtained:

where

-1

(7)

(8)

The coefficients S1l, S12, S21, and SZZ in (7) are also listed

in Appendix II. Next, by imposing the boundary condition

on the patch and outside the ~atch at the substrate-su~erstrate.
interface, the following integral equations can be {

[a[$;:]]=;n~:’n’ f~@’z”Z@)
—cc

[1
o——
o’

and, outside the patch,

.
xained:

Jon (k,)
Jzn(kz) 1

(9)

[1
o=
o“ (lo)

To solve for the above integral equations, the Galerkin’s

moment method [10] is applied. Following the Galerkin’s

calculation procedure, we first expand the surface current

density on the patch in terms of linear combinations of known

basis functions, i.e.

where I+n and Izm are unknown coefficients for the nth

expansion mode of the basis functions Jon and Jz~ in the

@ and z directions, respectively. A convenient choice of the

basis functions is the cavity mode functions of

.
J,n(q5, z) = z sin [;(~+q co, [~(wd]j

(5) (12b)
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(13a)

(13b)

The sinusoidal basis functions of (13) consider the edge sin-

gularity condition for the tangential component of the surface

current at the edge of the patch, while the basis functions

of (12) do not consider such edge singularity conditions. The

combinations of the integers p, q, r, and s depend on the mode

numbers n and m. For the first three modes, n = 1, 2, and 3,

the values of (p, q) are (1, O), (1, 1) and (1, 2), respectively, and

the values of (r-, s) are (1, O), (1, 1) and (1, 2) for m = 1,2

and 3. The numerical convergence for the sinusoidal basis

functions with and without considering the edge singularity

condititm will be calculated and discussed in detail in Section

III. Next, by taking the spectral amplitudes of the selected

basis functions and substituting into (9), we have

-[1
o— 0> (14)

—T –L

Using the selected basis functions as testing functions and

integrating over the patch area, we can have the following

homogeneous matrix equation

[

(Zp)iw (ZK)NXM
(-Z;:)MXIV (%JAIXM 1“[1:5::1=[:1) “7)

where

k,m=l,2,.., i’M,

i,n=l,2,...,lV. (18d)

1

0,8
w,thout edge SLng Uk,r,ty

!

\

/(0 N.M.2, X N.3, M.2 )

096 -

094 with edge singularity

( O :N.M.2, v N.3, M.2 )
092 -

09

088

086

084

082
1

3--==
w,th edge smgular,ty ( N.2, M.i )

wtho.t edge smgularay ( N.2, M.1 )
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(b)

Normahzed frequency shifts with different numbers of the sinusoidal

basis functions with and without the edge singularity condition versus substrate

thickness; a = 20 cm, L = 4 cm, I@. = 8.4 cm, .sl = 2.3. (a) Real resommt
frequency. (b) Imaginary resonant frequency.

There exist nontrivial solutions for l@n and lZm in (17) if the

determinant of (17) vanishes, i.e

The solutions to (19) are then found to be satisfied by complex

frequencies. For a particular mode, the complex frequency is

~ = -f’ + ~.f that gives the resonant frequency f’ and the

quality factor ~’/2~” for the superstrate-loaded cylindrical-

rectangular microstrip structure.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, typical numerical results of the superstrate-

loaded cylindrical-rectangular microstrip patch at the HEOI

mode are presented and analyzed. The hybrid mode HEO1

tends to the TEO1 mode for the case of vanishing thin sub-

strates, which is shown to be an efficient radiating mode [2].

The numerical convergence and the computer computation

time for the calculation with the sinusoidal basis functions of

(12) and (13), respectively, are first studied. Fig. 2 shows the

real and imaginary parts of the complex resonant frequencies

obtained for different numbers of the sinusoidal basis functions

with and without the edge singularity condition versus the

substrate thickness. The substrate is with a relative permittivity

of 2.3 and the radius of the ground conducting cylinder is
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chosen to be 20 cm. The cylindrical-rectangular microstrip

patch considered in the calculation is with a straight dimension

of 2L = 8 cm and a curved dimension of 2b@o = 16.8

cm. The frequencies are all normalized with respect to the

cavity-mode resonant frequency [11]. It is observed that both

the real and imaginary resonant frequencies can only reach

convergent solutions for both the basis functions of (12) and

(13) with IV ~ 2 and M ~ 2. It is also found that the computer

computation time for reaching the convergent solution of one

resonant frequency (N = M = 2) on a HP720 workstation is

about the same and is estimated to be about 700 seconds. The

real parts of the convergent solutions using basis functions

with edge singularity are also found to differ from those

without edge singularity with about 0.570, while the imaginary

parts of the convergent solutions for both types of the basis

function are almost exactly the same. The convergent results

are also in good agreement with those presented in [2]. It is

also noted that, for N = 2, M = 1, the obtained results of the

basis function with edge singularity are seen to be much closer

to the convergent results than those obtained by using the basis

functions without edge singularity, especially for the imaginary

parts of the results and the higher thickness of the substrate.

This may imply that the sinusoidal basis functions considering

the edge singularity can describe the unknown surface current

on the cylindrical-rectangular patch more accurately.

Fig. 3 shows the normalized real and imaginary parts of the

complex resonant frequencies versus the superstrata thickness

for e2 = 2.3,4.0, and 5.6 with a = 20, cc cm. The substrate

thickness h is 0.4 cm and the relative permittivity Cl is 2.3.

The results for the planar microstrip case (a = IX cm)

are obtained in [9], which is based on a rigorous Green’s

function formulation and moment method calculation. The

basis functions of (13) with iV = M = 2 are used to obtain

the results. It can be seen that the real (resonant) frequency

decreases as the superstrata permittivity increases and the

curved microstrip case is with a higher resonant frequency than

that for the planar microstrip case. From the imaginary results

in Fig. 3(b), it is seen that the radiation loss of the cylindrical-

rectangular microstrip structure at HEO1 mode is higher than

that for the planar microstrip case and can be further increased

when a higher superstrata permittivity is used. The variations

of the quality factor with the superstrata thickness for the case

in Fig. 3 are shown in Fig. 4. The quality factor is seen to

decrease when the superstrata permittivity is higher, and the

curved microstrip case is with a lower quality factor than that

for the planar microstrip case.

IV. CONCLUSIONS

A full-wave approach and the Galerkin’s moment method

are employed to solve the complex resonant frequency for a

superstrate-loaded cylindrical-rectangular microstrip structure.
The sinusoidal basis functions with the edge singularity are

found to be more appropriate for expanding the unknown

surface current on the cylindrical-rectangular patch. Numerical

results also indicate that both the resonant frequency and the

radiation loss of the curved microstrip structure are higher than

those of the planar case. On the contray, the quality factor of
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Normalized frequency shifts versus the superstrata thickness for
3,4.0, and 5.6 a = 20, ec cm. (a) Real resonant frequency. (b)

Imaginary resonant frequency. The results for the planar microstrip case
(a = co cm) are obtained in [9].
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Fig. 4. Variations of the quality factor with the superstrata thickness for the
case in Fig. 3.

the curved structure is lower than that of the planar case. On

the other hand, as the superstrata permittivity increases, both

the resonant frequency and the quality factor decrease and the

radiation loss, however, increases.

APPENDIX I

The coefficients A;, B:, C:, and D:, x = e, h, for E. and

Hz in regions 1 and 2 can be expressed in terms of G: in
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region 3 and given by

A: = Jn(klPa)[C~H~lj(kzPb)

+ DgJn(k2pb)]/[Jn (klpa)~$) (hpb)

— Jn(klp~)@(&~)],

~: = _ ~il)(kpa) A.

Jn(k@) “

D: z
‘~3~n(~2Pc) G; + 1 – a4@il@j Gh

Jn(kzPc) Jn(k2pc) “

where

[

C31C2p~~1)’ (lC3pC) Jl(~2PC)
al = O@ —

&P~$)(kspc) 1Jn(~2pC) ‘

[

k2pH#)’ (k3pc) J:(k2pC)
@ =

hpzv (k3pc) Jn(~2pC) 1

()

jwqkzn ~ _ ~

‘4 = k&k2pb &3 ‘

Jn(k2pC)

J’ (k c)H$1)(k2Pc)ao = i7f)’(k2pC)Jn(k2 PC) – n 2P

APPENDIX II

The coefficients XII, X12, X21, X22, S11,S12, S21, S22 are

expressed as

Xll = /31Xo//3fI – gz~4,

X12= p2xl)/f?lJ– [y3p4 + Jn(k2pb)/Jn(k2pc)],

jkcl
X21= —

{[
J~(lc2pb)

= yo#L?3 +
1207r I%2P Jn(~2pC) 1

[
–~poxl ~o@4+ J“(~2Pb)

Jn(k2pc) 1}

-{

nkz /31

‘b
—X. – Z&L
k;ppo 2p

}

[

.jlCo C23
X22= —

l’2@r &@3 + ~YlD4pox1~lp 1

[

nkz ~5
+—

(
—Xo – + Y3P4 +

Jn(kzPb)

b k;p/30 2p )]Jn (k2PC) ‘

Sll . .%

[ 1Jn(kzpb) _ .ilzM1~o ,
YOP4 +

lp Jn(k2pC) hp

S12= –$31p4 –
j1207r/3,5ko

lp klp ‘

S22 = Y1P4,

where

Xo =
J~(klPb) H$) (klpb)J~(klpa) – IL!)’ (hpa)J~(hpb)

Jn(klPb) H~l)’ (klPb)Jn(klpa) – H~l)’ (klpb)J~(klpb)’

Jn(klpb) Hjil)’ (klpb)Jm(klpa) – H:)’ (klpa)JL(klpb)

‘1 = JL(klPb) H~l)(klpb)Jn(klpa) – H~l)’(klpa)J~(klPb) ‘

PO= J~(klpb)/Jn(klpb),

( )(/3,=, ‘k’ $-1 Jn(kzpb)
j1207rkok1Pb Zp ’064 + J~(k2pc) )

~lp
+ ‘Y2B4,

~2p

02 = JL(~2pC)/Jn(~2pC),

~3 = Z!) ’(~2#0 – J&(kzpb)H$)(kzPc) /Jn(kzpc),
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